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Abstract. An explicit expression is obtained for the perimeter and area generating function 
G(y ,  z )  =E,,*> Z,,,,, c ,,,,,, y”z”’, where c ,,,,,, is the number of row-convex polygons with area 
m and perimeter n. A similar expression is obtained for the area-perimeter generating 
function for staircase polygons. Both expressions contain q-series. 

1. Introduction 

The solution of the ‘self-avoiding polygon’ problem in greater than one dimension 
remains elusive; however, progress has been made in solving various simpler, but 
non-trivial, self-avoiding polygon (SAP) problems. In particular there are three classes 
of polygon problems where exact solutions now exist, these are the staircase polygons, 
convex polygons and row-convex polygons. 

The most relevant quantity of interest is the perimeter generating function 
X 

G ( Y )  = C C”Yn 
n = l  

where c, is the number of polygons of the appropriate type which have a perimeter 
of n steps. If possible, the two-variable area and perimeter generating function G ( y ,  z )  
should be calculated. Here, 

x x  

G(Y, z ) =  C C C n , m y n Z m  
n = 1  m = l  

where cn,m is the number of the appropriate polygons with perimeter n and area m. 
The polygon generating function is analogous to the free energy of a magnetic spin 

system. In particular the single-variable (perimeter) generating function is analogous 
to the zero-field free energy, whilst the two-variable generating function is analogous 
to the free energy of a spin system in a non-zero external field. The y variable is a 
temperature-like coordinate, whilst z is an external field-like coordinate. An alternative 
analogy is to a fluid system where the generating function is analogous to the grand 
potential and z to the activity. This analogy suggests the polygon system should possess 
a phase diagram, which is obtained in section 4. 

A SAP is any self-avoiding walk whose final site is a nearest neighbour of the initial 
site, augmented by the bond joining the final site to the initial site. For the square 
lattice, staircase polygons are a subset of the SAPS whose steps consist only of a sequence 
of north and east steps followed by a sequence consisting only of south and west steps. 
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The staircase perimeter generating function was first obtained by Temperley (1956) 
and  the perimeter and area generating function was obtained by Polya (1969). 

The SAPS whose perimeter is the same as that of their minimum bounding rectangle 
are called convex. The convex perimeter generating function was obtained indepen- 
dently by Delest and  Viennot (1984), Guttmann and Enting (1988a), Lin and Chang 
(1988) and  Kim (1988). Although the two-variable generating function for convex 
polygons has not been solved, various area weighted moments have been obtained. 
The rth area-weighted moment is defined by 

The first two area-weighted moments were obtained by Enting and Guttmann (1989) 
and  the first, second and  third by Lin (1990) who provided a general method for 
obtaining the rth moment. 

Row convex polygons on the square lattice are SAPS satisfying the following 
constraint; the number of vertical steps in the minimum bounding rectangle has the 
same number of vertical steps as the polygon. Thus, loosely speaking, the row-convex 
polygons are convex in the row (horizontal) direction but unconstrained in the vertical 
direction. The row-convex class of polygons is larger than the staircase and convex 
polygons but smaller than the SAPS. The first explicit solution of the single variable 
generating function was obtained by Brak et a1 (1990). 

In this paper we obtain the two-variable generating function for row-convex 
polygons in section 3. In section 2 we obtain the two variable generating function for 
the staircase polygons. Although this generating function has already been obtained 
by Pblya (1969), the result we obtain is of a very different form to that obtained by P6lya. 

2. Staircase polygon generating function 

We follow the method of Temperley (1956) and  consider a sequence of generating 
functions. Let h, be the generating function for staircase polygons, on the square 
lattice, whose first row contains exactly n squares. Then h, satisfies the following 
equations 

h l = z y 4 + y 2 Z [ h , + h 2 + h 3 + h 4 +  ...I 

h, = z 3 y s +  y2z3[y4h, + ( y 2 +  y4)h2+ (1 + y 2 +  y4)h3+ (1 + y 2  +y4)h4+ .  . . ]  
h4 = 24y10+ y*z4[y6h, + (y4+ p ) h 2  + ( y 2  + y 4  + y 6 ) h ,  + (1 + y 2 + y 4 +  y 6 ) h 4  + . . .I 

h2 = z2y6+y2z2[y2hl + (1 + y 2 ) h 2 +  (1 + y 2 ) h 3  + (1 + y 2 ) h 4 + .  . . ]  
(1) 

from which the following recurrence relation may be derived: 

h,,2 - z (  1 + y' - y 2 Z n + l ) h , + ,  + y2z%, = 0. (2) 

This recurrence relation is not a difference equation with constant (i.e. n independent) 
coefficients and  thus not amenable to the 'text book' methods of solution. We try the 
following ansatz (Privman and SvrakiC 1988): 

X 

h,=A" r,,(z)zm" 
m = O  

(3)  
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where r m ( z )  is an arbitrary function of z for m > 0 and ro = 1 (in order to obtain the 
correct z + 0 limit). Substituting ( 3 )  into (2) and rearranging gives 

A ~ -  ~ ( i  + y 2 ) h  + z 2 y 2  
X 

+ [y2Az1+mrm-l  + rm(A2z2m - Az( 1 + y ' ) z m  + z Z y 2 ) ] z m n  = 0. (4 )  
m = l  

We then choose A and rm such that 

h 2 -  ~ ( i  + y 2 ) ~  + z 2 y 2  = o (5 )  

and 

y2Az1*"rm-,+rm(AZz2" - A z ( 1 + y 2 ) z m + z 2 y 2 )  = O .  ( 6 )  

Equation (5 )  has two solutions A ,  = z and A 2  = zy2.  As ( 6 )  is just a first-order difference 
equation for r m ,  it is readily solved to give 

( -  Zy2A ) mZ m (  m i l  ) / Z  

l-Ir= I ( Azk - zy2 ) (Azk  - Z )  ' 
- - 

Thus the general solution is h, = A,h',"+ A2h',Z', where 

(7) 

and where A ,  and A2 are arbitrary functions of y and z determined by the initial 
conditions. 

The generating function G(y, z )  is given by 
X 

G(y, z )  = 1 (Alh!,"+A2h!,2)). 
n = l  

( 9 )  

In the limit y+O, z =  1 we have A l - O ( l )  and A 2 - 0 ( y 2 )  whilst h,-O(y2"f2). This 
implies that A I  = 0. The second constant A2 is obtained by substituting h2 and h ,  
obtained from (8) into the recurrence relation (2) (with n = 0, ho= y ' )  and solving for 
A 2 .  If this is done and the result substituted into ( 9 )  then, after some rearranging the 
following result is obtained 

where 

and 

Equation ( 1 0 )  has been expanded to order y2" using Mathematica (Wolfram 1980) 
and the coefficients of positive powers of z agree with those obtained by expanding 
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the result obtained by P6lya (1969). We note that the form of (10) is very different to 
that given by P6lya’s result. His result is also invariant under the transformation z +  l / z  
(i.e. it generates negative powers of z) .  I t  would be of some interest to relate the two 
results, particularly as the P6lya result contains the more ‘natural’ Gaussian polynomials 
which generate areas under ‘zig-zag’ paths. 

3. Row-convex polygon generating function 

Let g, be the generating function for row-convex polygons whose first row contains 
exactly n squares. Then, as shown by Temperley (19561, g, satisfies the following 
equations 

g,=zy4+zy2[gl+2g2+3g3+4g4+.  . .] (13) 

(15) 

+ (1+2y2+2y4+2y6)g4+ .  . . ]  (16) 
and similarly for n > 4 .  From these it is easily shown that g, satisfies the recurrence 
relation, 

g 2 =  z2y6+z2y2[2y2gl+(1 + 2 y 2 ) g 2 + ( 2 + 2 y 2 ) g 3 + ( 3 + 2 y 2 ) g , + .  . . ]  
g, = z3y8+ z3y2[3y4g, + (2y2+ 2y4)g2+ (1 + 2y2+ 2y4)g3 + (2 + 2y2+ 2y4)g4+.  . . ]  

(14) 

g 4 =  z4y10+z4y2[4y6gl + ( 3 y 4 + 2 y 6 ) g , + ( 2 y 2 + 2 y 4 + 2 y 6 ) g 3  

g,+4 + PI g, + 3  + ( p2 - p3 2 +*) g, + 2  + p4g, + 1 + psg, = 0 
where 

p ,  = -2z( 1 + y’) 

pr  = z2( 1 + 4y* + y4) 

p3 = z*yZ( 1 -y2)2 

p4 = -2z3y2( 1 + y 2 )  

p5 = z4y4. 

The solution to (17) is rather more complex than that for the staircase polygons. 
To see why consider the following: consider (17) in the limit n +CO with r j x e d ,  then 
the z n  factor tends to zero (as Iz( < 1) and hence in this limit, g, + ĝ  and (17) becomes 

(18) 

( A  -zy*)’(A - ~ ) ’ = 0 .  (19) 

i n + 4  + PI i n n + ,  + P2in+2 + P 4 i n - .  1 + p s i ,  = 0 n+cc  

which has the characteristic equation 

Thus (19), unlike the stair polygons characteristic equation, has two pairs of equal 
roots and hence the four independent solutions are 

& = A n  
g,, = nA“ 

A = zy2 or z 
A = zy’ or z. 

This suggests that g, and ng, provide the four independent solutions to (17) rather 
than all four coming from 8,. Before considering all four solutions we solve (17) for 
g,. Trying again an ansatz (Privman and SvrakiC 1988) of the form 

X 

g,=A” 1 r m ( r ) z m n  (21) 
m = O  
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with ro = 1, n > 1 gives rise to the characteristic equation ( 1 9 )  and to a first-order 
difference equation for rm similar to ( 6 ) .  The difference equation has the solution 

A 2m ( zy ) 2 m ( 1 - 2 ) 2  mZ m ( m + 1 t 

rm = nT=:=, ( A Z ~ - Z ) ' I I T = ~  ( A z k - y 2 z ) ' '  

Thus for the characteristic value A I  = y'z, we have one solution, 
X 

The second solution with A = z we reject on the same grounds that A I  of ( 9 )  was rejected. 
We now try to obtain the remaining two independent solutions. Returning to ( 1 7 )  

we try a solution of the form 

( 2 4 )  g Y ' =  ng',"+q, 

which, after substituting into ( 1 7 ) ,  gives 

q n + 4  + P I  q n + 3  + ( ~2 - ~ 3 z " + ~ ) q n + 2  + ~ 4 q n + l +  p 5 q n  +4g(,'i4 

+ 3p  I g 2 3  + 2 ( p2 - p3 z + 2  1 g!2* + p4g::, = 0. 

To solve ( 2 5 )  we try 

with uo = 0. Substituting into ( 2 5 ) ,  and after some work we get the following simple 
first-order difference equation for U, : 

2(  1 - y2z2") 

( 1  -z" ) ( l -y2z")  
U, - U m - ]  = 

which has the solution 

Substituting ( 2 8 )  into ( 2 6 )  and with (23) gives g y '  explicitly. The fourth solution given 
by taking A = z is also rejected as it gives the wrong limiting behaviour. 

The general solution is thus 

g ,  = A,",''+ A2g',Z'. ( 2 9 )  

where A I  and A,  are arbitrary functions of y and z (but independent of n ) .  What we 
eventually require is G(y ,  z )  = X:=l g , .  However in order to eliminate A I  and A2 we 
shall also require H = E:=l ng,. 

From (13)-( 16) we obtain 

g2-zgl  = ~ ~ y ~ ( y * - l ) - ~ * y ~ ( l  -2y2 )G 

gl = zy4 + zy2 H 

which provide the 'initial' conditions for the recurrence relation ( 17) .  Substituting the 
expressions obtained for g l ,  g , ,  H and G into (30) gives two linear simultaneous 
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equations for the two unknowns A ,  and A,. Solving these two equations gives the 
final solution for the two variable generating function G(y,  z )  as 

where 

m=O 

y2”(1 -y’)2m 
n,”=, (1 -y  z )-l-I,”=, ( l - z k ) 2 ’  R, = 2 k ?  

The above solution has been expanded as a two-variable Taylor series using 
Mathematica to order y”zI6 and all the terms agree with the exact enumeration results 
of Enting and  Guttmann (unpublished). We note that because of the natural boundary 
of singularities at IzI = 1, coming from R,, it is not possible to take the limit z +  1 of 
(31) in order to obtain the perimeter generating function of Brak er a1 (1990) .  

4. Numerical analysis of row-convex result 

Because of the analogy of the polygon problem to a fluid system we should expect to 
be able to construct a ‘phase diagram’ from the ‘grand potential’ G ( y ,  z). The general 
form of the phase diagram has been suggested by M E Fisher (private communication). 
The phase boundary is a line of critical points y = y ( z ) .  

As a prelude to an  analytical analysis of the two-variable generating functions, 
which we hope to publish, we have carried out a numerical analysis of both the staircase 
and row-convex two-variable generating functions (10) and (31), which consists of the 
following steps: the equations have been used to generate a series expansion of G ( y ,  z ) .  
For a range of numerical values of y ,  the single-variable series in z were then analysed 
using differential approximants to obtain the critical value of z and the corresponding 
critical exponent. The line of points y = y ( z )  is the ‘phase boundary’ which is plotted 
for the row convex and  staircase polygons in figure 1 (as y 2  against z ) .  The vertical 
line from ( 1 , O )  to (1, yf)  is the ‘condensation line’, of the ‘zero-field’ phase boundary. 
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Figure 1. A plot of the phase boundary for the row-convex polygons (solid diamonds e) 
and the staircase polygons (dotted square 0). The z variable is the area generating variable 
(analogous to an external field), and y z  is the square of the perimeter generating variable 
(analogous to a remperature variable). 

The critical value y ,  is the critical value of the perimeter generating function and is 
given by y ,  = A-  1 for the row-convex polygons and y ,  = for the convex polygons 
(Brak et a1 1990). The critical exponents along the line are 1 (corresponding to a simple 
pole) except when the boundary is approached along the line z = 1 where the exponents 
are $ (a  branch zero) for both row-convex and staircase polygons. 

The limiting behaviour of the row-convex phase boundary as x + 0 is found to be 

6 

5 

4 

liY2 3 

2 

1 

0 2 4 6 8 1 0  12 
z XlV' 

Figure 2. A plot of the phase boundary with plot axis l / y '  against z. The linear behaviour 
of the plots near the origin shows that y ' -  1/2.91z, i -+ 0 for the row-convex polygons and 
that y ' -  1/22, z + 0 for the staircase polygons. 
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which is seen, in figure 2, from the ‘straight line’ behaviour of a plot of 1/y2 against 
z, in the region of z = 0. For the staircase polygons the behaviour is 

1 
2z 

y2 - - z + 0 (staircase) 

as shown in figure 2. A numerical fit of a rational function to each of the phase 
boundary curves gave the following results: 

0.1151+z 
z(0.0402+ 1.9983~) 

y -  = (staircase) 

-0.0761 + z 
(row-convex). ” =  z(0.0567+2.9131~) 

When these rational approximations are plotted on the same graph as the phase 
boundaries of figure 1, the curves are indistinguishable. 
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